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We study a system of N≫1 degrees of freedom coupled via a
smooth homogeneous Gaussian vector field with both gradient
and divergence-free components. In the absence of coupling, the
system is exponentially relaxing to an equilibrium with rate μ. We
show that, while increasing the ratio of the coupling strength to
the relaxation rate, the system experiences an abrupt transition
from a topologically trivial phase portrait with a single equilibrium
into a topologically nontrivial regime characterized by an expo-
nential number of equilibria, the vast majority of which are expected
to be unstable. It is suggested that this picture provides a global view
on the nature of the May−Wigner instability transition originally
discovered by local linear stability analysis.

complex systems | equilibrium | model ecosystems | random matrices

Will diversity make a food chain more or less stable? The
prevailing view in the midtwentieth century was that di-

verse ecosystems have greater resilience to recover from events
displacing the system from equilibrium and hence are more
stable. This “ecological intuition” was challenged by Robert May
in 1972 (1). At that time, computer simulations suggested that
large complex systems assembled at random might become un-
stable as the system complexity increases (2). May’s 1972 paper
complemented that work with an analytic investigation of the
neighborhood stability of a model ecosystem whereby N species
at equilibrium are subject to random interactions.
The time evolution of large complex systems, of which model

ecosystems is one example, is often described within the general
mathematical framework of coupled first-order nonlinear ordi-
nary differential equations (ODEs). In the context of generic
systems, the Hartman−Grobner theorem then asserts that the
neighborhood stability of a typical equilibrium can be studied by
replacing the nonlinear interaction functions near the equilib-
rium with their linear approximations. It is along these lines that
May suggested looking at the linear model

dyj
dt

=−μyj +
XN
k=1

Jjk   yk, j= 1, . . . ,N, [1]

to study the stability of large complex systems. Here J = ðJjkÞ is
the coupling matrix and μ> 0. In the absence of interactions, i.e.,
when all Jjk = 0, system [1] is self-regulating: If disturbed from the
equilibrium y1 = y2 = . . . = yN = 0, it returns back with some char-
acteristic relaxation time set by μ. In an ecological context, yjðtÞ is
interpreted as the variation about the equilibrium value, yj = 0, in
the population density of species j at time t. The element Jjk of
the coupling matrix J, which is known as the community matrix in
ecology, measures the per capita effect of species k on species j at
the presumed equilibrium. Generically, the community matrix is
asymmetric, Jjk ≠ Jkj.
For complex multispecies systems, information about the in-

teraction between species is rarely available at the level of detail
sufficient for the exact computation of the community matrix and
a subsequent stability analysis. Instead, May considered an en-
semble of community matrices J assembled at random, whereby

the matrix elements Jjk are sampled from a probability distribu-
tion with zero mean and a prescribed variance α2. This is similar
to the approach taken by Wigner in his description of statistics of
energy levels of heavy nuclei via eigenvalues of random matrices,
which proved to be very fruitful (3). A detailed review of May’s
model in the light of recent advances in random matrix theory
can be found in ref. 4.
The linear system [1] is stable if, and only if, all of the ei-

genvalues of J have real parts less than μ. Invoking Wigner’s
arguments for studying eigenvalues of large random matrices,
May claimed that, for large N, the largest real part of the ei-
genvalues of J is typically α

ffiffiffiffi
N

p
. Obviously, the model’s stability is

then controlled by the ratio m= μ=ðα ffiffiffiffi
N

p Þ. For large N, system
[1] will almost certainly be stable if m> 1 and unstable if m< 1,
with a sharp transition between the two types of behavior with
changing either μ, α, or N. In particular, for fixed μ, α, system [1]
will almost certainly become unstable for sufficiently large N.
Despite the simplistic character of May’s model (5), his pio-

neering work gave rise to a long-standing “stability versus di-
versity” debate, which is not fully settled yet (4, 6–9), and played
a fundamental role in theoretical ecology by prompting ecolo-
gists to think about special features of real multispecies ecosys-
tems that help such systems to remain stable. Variations of May’s
model are still being discussed nowadays in the context of
neighborhood stability (see ref. 4 and references therein).
One obvious limitation of the neighborhood stability analysis

is that it gives no insight into the model behavior beyond the
instability threshold. Hence May’s model has only limited bear-
ing on the dynamics of populations operating out of equilibrium.
An instability does not necessarily imply lack of persistence:
Populations could coexist thanks to limit cycles or chaotic
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attractors, which typically originate from unstable equilibrium
points. Important questions posing serious challenges then relate
to classification of equilibria by stability, studying their basins of
attraction, and other features of global dynamics (4). Over the
last few years, as computing power grew, nonlinear models have
increasingly been used to investigate population dynamics on the
global scale by means of numerical integration of the corre-
sponding system of ODEs (10–13). Although such investigations
captured a rich variety of types of behavior such as fold bifur-
cations when points of equilibrium merge/annihilate (14), or
various types of chaotic dynamics (15, 16), they provide little
analytic insight and are limited to small to medium-sized systems.
In this paper, we attempt to investigate the generic properties

of the global dynamics of large complex multispecies systems by
retaining in our model only the bare essentials—nonlinearity and
stochasticity. Much in the spirit of May’s original approach, the
model we propose is simple enough to allow for an analytic
treatment yet, at the same time, is rich enough to exhibit a
nontrivial behavior. In particular, our model captures an instability
transition of the May−Wigner type, but now on the global scale. It
also sheds additional light on the nature of this transition by relating
it to an exponential explosion in the number of equilibria. In-
terestingly, despite the nonlinear setting of the problem, the random
matrix ideas again play a central role in our analysis.
Similar to the May’s linear model, our toy model is likely to

have rather limited practical significance for quantitative de-
scription of real ecosystems, but it might provide insight into the
generic qualitative features of such systems and beyond, e.g.,
machine learning (17) or financial ecosystems (18, 19). The idea
of destabilization by interaction is of relevance far beyond the
mathematical ecology context, as applications of systems of many
coupled nonlinear ODEs are vast [e.g., complex gene regulatory
networks (20), neural networks (21, 22), or random catalytic
reaction networks (23)].

Model
Consider a system of N coupled nonlinear autonomous ODEs of
the form

dxi
dt

=−μxi + fiðx1, . . . , xNÞ, i= 1, . . . ,N, [2]

where μ> 0 and the components fiðxÞ of the vector field f =
ðf1, . . . , fNÞ are zero mean random functions of the state vector
x= ðx1, . . . , xNÞ. To put this model in the context of the discus-
sion in the Introduction, if xe is an equilibrium of [2], i.e., if
−μxe + fðxeÞ= 0, then, in the immediate neighborhood of xe, sys-
tem [2] reduces to May’s model [1] with y= x− xe and Jjk =
ð∂fj=∂xkÞðxeÞ.
The nonlinear system [2] may have multiple equilibria whose

number and locations depend on the realization of the random
field fðxÞ. To visualize the global picture, it is helpful to consider
first a special case of a gradient descent flow, characterized by
the existence of a potential function V ðxÞ such that f =−∇V . In
this case, system [2] can be rewritten as dx=dt=−∇L, with
LðxÞ= μjxj2=2+V ðxÞ being the associated Lyapunov function
describing the effective landscape. In the domain of L, the state
vector xðtÞ moves in the direction of the steepest descent, i.e.,
perpendicular to the level surfaces LðxÞ= h toward ever-smaller
values of h. This provides a useful geometric intuition. The term
μjxj2=2 represents the globally confining parabolic potential, i.e.,
a deep well on the surface of LðxÞ, which does not allow x to
escape to infinity. At the same time, the random potential V ðxÞ
may generate many local minima of LðxÞ (shallow wells), which
will play the role of attractors for our dynamical system. More-
over, if the confining term is strong enough, then the full land-
scape will only be a small perturbation of the parabolic well,
typically with a single stable equilibrium located close to x= 0.

In the opposite case of a relatively weak confining term, the
disorder-dominated landscape will be characterized by a compli-
cated random topology with many points of equilibria, both stable
and unstable. Note that, in physics, complicated energy landscapes
are a generic feature of glassy systems with intriguingly slow long-
time relaxation and nonequilibrium dynamics (see, e.g., ref. 24).
The above picture of a gradient descent flow is, however, only

a very special case, because the generic systems of ODEs [2] are
not gradient. The latter point can easily be understood in the
context of model ecosystems. For, by linearizing a gradient flow
in a vicinity of any equilibrium, one always obtains a symmetric
community matrix, whereas the community matrices of model
ecosystems are, in general, asymmetric. Note also a discussion of
an interplay between nongradient dynamics in random environ-
ment and glassy behavior in ref. 25.
To allow for a suitable level of generality, we therefore suggest

choosing the N-dimensional vector field fðxÞ as a sum of gradient
and nongradient (solenoidal) contributions,

fiðxÞ=−
∂V ðxÞ
∂xi

+
1ffiffiffiffi
N

p
XN
j=1

∂AijðxÞ
∂xj

, i= 1, . . . ,N, [3]

where we require the matrix AðxÞ to be antisymmetric: Aij =−Aji.
The meaning of this decomposition is that vector fields can be
generically divided into a conservative irrotational component,
sometimes called “longitudinal,” whose gradient connects the
attractors or repellers, and a solenoidal curl field, also called
“transversal.” As discussed in, e.g., ref. 26, such a representation
is closely related to the so-called Hodge decomposition of differen-
tial forms and generalizes the well-known Helmholtz decomposition
of the three-dimensional vector fields into curl-free and divergence-
free parts to higher dimensions. Correspondingly, we will call V ðxÞ
the scalar potential and the matrix AðxÞ the vector potential. The
normalizing factor 1=

ffiffiffiffi
N

p
in front of the sum on the right-hand side

in Eq. 3 ensures that the transversal and longitudinal parts of fðxÞ
are of the same order of magnitude for large N.
Finally, to make the model as simple as possible and amenable

to a rigorous and detailed mathematical analysis, we choose the
scalar potential V ðxÞ and the components AijðxÞ, i< j, of the
vector potential to be statistically independent, zero mean
Gaussian random fields, with smooth realizations and the addi-
tional assumptions of homogeneity (translational invariance) and
isotropy reflected in the covariance structure,

hV ðxÞV ðyÞi= υ2ΓV

�
jx− yj2

�
; [4]

�
AijðxÞAnmðyÞ

�
= a2ΓA

�
jx− yj2

��
δinδjm − δimδjn

�
. [5]

Here the angular brackets h. . .i stand for the ensemble average
over all realizations of V ðxÞ and AðxÞ, and δin is the Kronecker
delta: δin = 1 if i= n and zero otherwise.
For simplicity, we also assume that the functions ΓV ðrÞ and

ΓAðrÞ do not depend on N. This implies (27)

ΓσðrÞ=
Z ∞

0
expð−srÞγσðsÞds, σ =A,V ,

where the radial spectral densities γσðsÞ≥ 0 have finite total mass:R∞
0 γσðsÞds<∞. We normalize these densities by requiring that
Γ′′
σð0Þ=

R∞
0 s2γσðsÞds= 1. The ratio

τ= v2
	�

v2 + a2
�
, 0≤ τ≤ 1,

is a dimensionless measure of the relative strengths of the
longitudinal and transversal components of fðxÞ: If τ= 0, then
fðxÞ is divergence-free, and, if τ= 1, it is curl-free.
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Results
Determining and classifying all points of equilibria of a dynamical
system with many degrees of freedom is a well-known formidable
analytical and computational problem. In this paper, we shall focus
our investigation on the simplest, yet informative, characteristic of
system [2] by counting its total number of equilibria, that is, the total
number N tot of solutions of the simultaneous equations

−μxi + fiðx1, . . . , xNÞ= 0, i= 1, . . . ,N. [6]

Certainly, finding N tot is a good starting point of any phase
portrait analysis.
Had we restricted ourselves to the gradient descent flows, N tot

would simply count the number of stationary points (minima,
maxima, or saddle points) on the surface of the Lyapunov function
LðxÞ. The problem of counting and classifying stationary points of
high-dimensional random energy landscapes of various types has
attracted considerable interest in recent years (28–33). In particular,
works (28, 29) study such energy landscapes generated by a po-
tential equivalent to the above Lyapunov function. One of the main
conclusions of that study is that, for large N, the topology of the
Lyapunov function changes drastically with decrease of the strength
of the confining term relative to that of the interaction term in LðxÞ.
The change manifests itself in the emergence of a multitude of
equilibria, exponential in number. Such a transition is intimately
connected to the spin-glass-like restructuring of the Boltzmann−Gibbs
measure induced by the Lyapunov function when the latter is
treated as an effective energy landscape.
We shall prove below that, for large N, the general autonomous

system defined by Eqs. 2 and 3 exhibits a similar drastic change in
the total number of equilibria when the control parameter

m=
μ

α
ffiffiffiffi
N

p , where  α= 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
υ2 + a2

p
,

drops below the threshold value mc = 1. As in the case of gradi-
ent systems, the proof involves the Kac−Rice formula as a start-
ing point. However, performing the subsequent steps requires
quite different mathematical techniques due to the asymmetry
of the Jacobian matrix for nongradient systems.
The Kac−Rice formula (see, e.g., ref. 34) counts solutions of

simultaneous algebraic equations. Under our assumptions (ho-
mogeneity, isotropy, and Gaussianity of V and A), this formula
yields the ensemble average of N tot in terms of that of the
modulus of the spectral determinant of the Jacobian matrix
ðJijÞNi,j=1, Jij = ∂fi=∂xj (see Materials and Methods),

hN toti= 1
μN

D

det�−μδij + Jij
�

E, [7]

thus bringing the original nonlinear problem into the realms of
the random matrix theory.
The probability (ensemble) distribution of the matrix J can easily

be determined in closed form. Indeed, the matrix entries of J are
zero mean Gaussian variables and their covariance structure, at
spatial point x, can be obtained from Eqs. 4 and 5 by differentiation,�

JijJnm
�
= α2

�ð1+ eNÞδinδjm + ðτ− eNÞ
�
δjnδim + δijδmn

��
,

where eN = ð1− τÞ=N. Thus, to leading order in the limit N→∞,

Jij = α
�
Xij +

ffiffiffi
τ

p
δijξ

�
, [8]

where Xij, i, j= 1, . . . ,N are zero mean Gaussians with�
XijXnm

�
= δinδjm + τδjnδim, [9]

and ξ is a standard Gaussian, ξ∼Nð0,1Þ, which is statistically
independent of X = ðXijÞ. Note that, for the divergence free fields

fðxÞ (i.e., if τ= 0), the entries of J are statistically independent in
the limit N→∞, exactly as in May’s model. On the other side, if
fðxÞ has a longitudinal component (τ> 0), then this implies pos-
itive correlation between the pairs of matrix entries of J symmet-
ric about the main diagonal: hXijXjii= τ if i≠ j. Such distributions
of the community matrix have also been used in the neighborhood
stability analysis of model ecosystems (8). Finally, in the limiting
case of curl-free fields (τ= 1), the matrix J is real symmetric.
Representation [8] comes in handy, as it allows one to express

[7] as a random matrix integral,

hN toti=N−N
2

mN

Z ∞

−∞

D

det�x  δij −Xij
�

E

XN

e−
Nt2
2 dtffiffiffiffiffiffiffiffiffiffiffiffi

2π=N
p , [10]

where x=
ffiffiffiffi
N

p ðm+ t
ffiffiffi
τ

p Þ and the angle brackets h. . .iXN
stand for

averaging over the real elliptic ensemble of random N ×N ma-
trices X defined in Eq. 9; see also Eq. 20. This one-parameter
family of random matrices interpolates between the Gaussian
Orthogonal Ensemble of real symmetric matrices (GOE, τ= 1)
and real Ginibre ensemble of fully asymmetric matrices (rGinE,
τ= 0) (see ref. 35 for discussions). Both rGinE and its one-
parameter extension defined in Eq. 9 have enjoyed considerable
interest in the literature in recent years (36–40).
The matrix X is asymmetric (unless τ= 1) and can have real as

well as complex eigenvalues. The latter come in complex con-
jugate pairs. Their density, in the limit N→∞, is constant inside
the ellipse with the main half-axis

ffiffiffiffi
N

p ð1± τÞ and vanishes
sharply outside of the ellipse (35, 39, 41). The corresponding
theorem is known as the Elliptic Law, and its validity extends
beyond the Gaussian matrix distributions (42, 43). However, in
the context of our investigation, it is the density of real eigen-
values of X that appears to be most relevant.
Denote by ρðrÞN ðxÞ the density of real eigenvalues of N ×N

matrices X [9] averaged over all realizations of X. It is convenient
to normalize ρðrÞN ðxÞ in such a way that

R β
α ρNðxÞ  dx gives the av-

erage number of real eigenvalues of X in the interval ½α, β�. A
crucial observation is that ρðrÞN ðxÞ is directly related to the aver-
aged value of the modulus of the determinant that appears in
Eq. 10. Namely,

D

det�xδij −Xij
�

E

XN

= CNðτÞe
x2

2ð1+τÞρðrÞN+1ðxÞ, [11]

where CNðτÞ= 2
ffiffiffiffiffiffiffiffiffiffi
1+ τ

p
  ðN − 1Þ!=ðN − 2Þ!! and ρðrÞN + 1ðxÞ is the

average density of real eigenvalues of matrices X of size
ðN + 1Þ× ðN + 1Þ. For the limiting case τ= 0, this relation appeared
originally in ref. 44, and it can be extended to any τ∈ ½0,1Þ with-
out much difficulty (see Supporting Information for a derivation
of Eq. 11 following the approach of ref. 45). In the limiting case
of real symmetric matrices τ= 1, all eigenvalues of X are real and
relation [11] is also valid (28).
Combining Eqs. 10 and 11 and changing the variable of in-

tegration from t to λ=m+ t
ffiffiffi
τ

p
, one can express hN toti for system

[2] with N degrees of freedom in terms of the density of real
eigenvalues in the elliptic ensemble of random matrices [9] of
size ðN + 1Þ× ðN + 1Þ,

hN toti=KNðτÞ
mN

Z ∞

−∞
e−NSðλÞρN+1

�
λ

ffiffiffiffi
N

p �
 
dλffiffiffiffiffi
2π

p , [12]

where SðλÞ= ðλ−mÞ2=ð2τÞ− λ2=½2ð1+ τÞ� andKNðτÞ=N
−N+1

2 CNðτÞ=ffiffiffi
τ

p
. The importance of this relation is due to the fact that ρðrÞN ðxÞ is

known, in closed form, in terms of Hermite polynomials (39). This
allows us to carry out an asymptotic evaluation of the integral in [12]
and calculate hN toti in the limitN→∞. The key finding that emerges
from this calculation is that hN toti changes drastically around m= 1.
If m> 1, then
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lim
N→∞

hN toti= 1. [13]

On the other hand, if 0<m< 1, then, to leading order in the limit
N→∞,

hN toti= γτe
N
P

tot
ðmÞ, [14]

where
P

totðmÞ= ð1=2Þðm2 − 1Þ− lnm> 0 for all 0<m< 1.
Therefore, if m< 1, then hN toti grows exponentially with N.
The factor in front of the exponential in Eq. 14 is given by
γτ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1+ τÞ=ð1− τÞp

as long as τ< 1. The gradient limit τ= 1
can be approached by scaling τ with N. Setting τ= 1− u2=N,
0≤ u<∞, one obtains γτ = 4

ffiffiffiffiffiffiffiffiffi
N=π

p R ffiffiffiffiffiffiffiffiffi
1−m2

p
0 e−u

2p2dp. This regime
describes a weakly nongradient flow. The corresponding regime
for ensembles of asymmetric matrices was discovered long ago
(46, 47).
Close to the phase transition point m= 1, the complexity ex-

ponent vanishes quadratically,
P

tot=ð1−mÞ2 as m→ 1, implying
that the width of the transition region around m= 1 is 1=

ffiffiffiffi
N

p
.

According to the general lore of phase transitions, for large but
finite N, there exists a “critical regime” m= 1+ κN−1=2 where the
number of equilibria changes smoothly between the two phases [13]
and [14]. A quick inspection of Eq. 12 shows that the corresponding
crossover profile is determined by the profile of ρðrÞN ðxÞ in the vicinity
of the “spectral edge” x= ð1+ τÞ ffiffiffiffi

N
p

(see Materials and Methods).
After rescaling λ, λ= 1+ τ+ ζ

ffiffiffiffiffiffiffiffiffiffiffiffi
1− τ2

p
=

ffiffiffiffi
N

p
, the density ρðrÞN ðλ ffiffiffiffi

N
p Þ

converges to ð1=
ffiffiffiffiffiffiffiffiffiffiffiffi
1− τ2

p
ÞρðrÞedgeðζÞ in the limit N→∞, where (39)

ρðrÞedgeðζÞ=
1

2
ffiffiffiffiffi
2π

p


erfc

� ffiffiffi
2

p
ζ
�
+

1ffiffiffi
2

p e−ζ
2 ½1+ erfðζÞ�

�
, [15]

with erfðxÞ= 1− erfcðxÞ= ð2= ffiffiffi
π

p Þ R x
0 e

−t2   dt. In terms of ρðrÞedgeðζÞ,
the critical crossover profile is given by

hN toti= γτe
κ2
Z ∞

−∞
e−t

2=2   ρðrÞedge
�
cτt+ κγτ

. ffiffiffi
2

p �
dt, [16]

where cτ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ=ð1− τÞp

. The right-hand side of [16] interpolates
smoothly between the two regimes [13] and [14], when parame-
ter κ runs from κ=−∞ to κ=+∞.
Although our investigation is concerned with the ensemble

average of the number of equilibria N tot, we expect that, in the
limit N→∞, the deviations of N tot from its average hN toti are
relatively small. This is certainly the case above the critical thresh-
old, form> 1. For, under some additional technical assumptions on
the decay of correlations for fðxÞ, system [2] will almost certainly
have at least one stationary point (see ref. 48 for the relevant results
about the maxima of homogeneous Gaussian fields). Therefore,
N tot ≥ 1, and the established convergence of hN toti to 1 in the limit
N→∞ actually implies that the probability for N tot to take other
values than 1 is close to zero for large N. The problem of estimating
the deviation of N tot from its average value in the opposite regime
0<m< 1 is much harder and is an open and interesting question.†

Discussion
In this paper, we introduced a model describing generic large
complex systems and examined the dependence of the total
number of equilibria in such systems on the system complexity
as measured by the number of degrees of freedom and the

interaction strength. The inspiration for our work came from
May’s pioneering study (1) of the neighborhood stability of large
model ecosystems. Our outlook is complementary to that of
May’s in that it adopts a global point of view, which is not limited
to the neighborhood of the presumed equilibrium.
In the context of model ecosystems, our analysis is applicable

to complex multispecies communities in which each kind of
species on its own becomes extinct and thus interaction between
species is key to persistence of the community. The key feature
of our analysis is that, in the presence of interactions, as the
complexity increases, there is an abrupt change from a simple set
of equilibria (typically, a single equilibrium for large number of
species N � 1) to a complex set of equilibria, with their total
number growing exponentially with N. In the latter regime, we
expect the stable equilibria to be only a tiny proportion of all of the
multitude of equilibria (see discussion below), which is indicative of
long relaxation times and transient nonequilibrium behavior.
We expect this sharp transition in the phase portrait to be

shared by other systems of randomly coupled autonomous ODEs
with large numbers of degrees of freedom. To that end, it is
appropriate to mention that, very recently, a similar explosion in
complexity was reported in a model of a neural network con-
sisting of randomly interconnected neural units (22). The model
considered in ref. 22 is essentially of form [2] but with the particular
choice of fi =

P
j
JijSðxjÞ where S is an odd sigmoid function rep-

resenting the synaptic nonlinearity and Jij are independent centered
Gaussian variables representing the synaptic connectivity between
neuron i and j. Although Gaussian, the corresponding (non-
gradient) vector field is not homogeneous and thus seems rather
different from our choice and not easily amenable to a rigorous
analysis. Nevertheless, a shrewd semiheuristic analysis of ref. 22
revealed that, close to the critical coupling threshold, the two
models actually display very similar behavior, described essentially
by the same exponential growth in the total number of equilibria
with rate

P
totðmÞ. This fact points toward considerable universality

of the transition from [13] to [14] and suggests that the crossover
function [16] may be universal as well.
Our model captures an abrupt change in the dynamics of large

complex systems on the macroscopic scale. At the same time,
zooming in to classify each and every equilibrium point into lo-
cally stable or unstable seems a hard task. For, although line-
arizing the field fðxÞ around a given equilibrium is fairly
straightforward, with the outcome being the Jacobian matrix [8],
conditioning by the positions of equilibria and taking into ac-
count all eventualities is a highly nontrivial task. Given the sto-
chastic setup of our model, the question about stability of
individual equilibria may even be the wrong question to ask,
whereas addressing the statistics of the number of stable equi-
libria seems very appropriate.
Arguments similar to those in Results yield the ensemble av-

erage of the total number of stable equilibria, hN sti, over all
realizations of the vector field fðxÞ in terms of the random matrix
integral (compare with Eq. 10),

hN sti=N−N
2

mN

Z∞
−∞

�
det

�
x  δij −Xij

�
χx
�
Xij

��
XN

e−
Nt2
2 dtffiffiffiffiffiffiffiffiffiffiffiffi

2π=N
p , [17]

where χxðXÞ= 1, if all N eigenvalues of matrix X have real parts
less than the spectral parameter x=

ffiffiffiffi
N

p ðm+ t
ffiffiffi
τ

p Þ, and χxðXÞ= 0
otherwise. In the limiting case of a purely gradient dynamics
τ= 1, the rescaled Jacobian matrix X is real symmetric with all
N eigenvalues real. In this case, the above integral can be related
to the probability density of the maximal eigenvalue of the GOE
matrix (29, 30), with the latter being a well-studied object in the
random matrix theory (see, e.g., ref. 50 and references therein).
This observation can then be used to evaluate hN sti for N � 1.

†In this context, we would like to mention the recent work of Subag (33), who proved
that the deviations ofN tot from hN toti in the spherical p-spin model are negligible in the
limit of large system size. Although that model is different from ours, it is not dissimilar
to the gradient limit of τ= 1 of our model (32); for instance, the average number of
equilibria grows exponentially with N (30). Thus one might hope to adopt the technique
of ref. 33 to our model. Another relevant reference is ref. 49.
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One finds (29) that hN sti→ 1 if m> 1, whereas, if 0<m< 1, then,
to leading order in N, hN sti∝ eNΣst, with 0<Σst <Σtot. Thus, in the
case of purely gradient dynamics, as the complexity increases,
large nonlinear autonomous systems assembled at random un-
dergo an abrupt change from a typical phase portrait with a
single stable equilibrium to a phase portrait dominated by an
exponential number of unstable equilibria with an admixture of a
smaller, but still exponential in N, number of stable equilibria.
It was suggested to us by J.-P. Bouchaud that, in the general

case of nongradient dynamics 0≤ τ< 1, it would be natural to
expect a further phase transition in the plane ðm, τÞ such that,
below a certain number τcðmÞ, stable equilibria are no longer
exponentially abundant in the limit N→∞ [i.e.,

P
stðm, τÞ→ 0],

with further implications for the global dynamics. Unfortunately,
for a fixed 0≤ τ< 1, only a vanishing fraction of order N−1=2 of
eigenvalues of X remain real, and the relation of the integral in
Eq. 17 to statistics of the largest real eigenvalue in the elliptic
ensemble seems to be lost. This fact has prevented us, so far,
from reliable counting of stable equilibria for the general case of
nongradient flows. In principle, for given values of parameters
N, τ,m, one may attempt to evaluate the random matrix ensemble
average in the integral in [17] numerically, and then evaluate nu-
merically the integral itself. Although such a procedure seems
tractable, its actual implementation with sufficient precision is not
straightforward, especially in the limit N→∞, due to the expo-
nentially large values involved. Clarification of the status of the
picture suggested by J.-P. Bouchaud and related studies remain an
important outstanding issue.

Materials and Methods
Kac−Rice Formula. The expected number ÆN tot æ of simultaneous solutions to
the system of Eq. 6 in RN is given by the formula (see, e.g., ref. 34)

ÆN tot æ=
Z
RN

Æδð−μx + fðxÞÞ

det�−μδij + JijðxÞ
�

æ  dxN , [18]

where δðxÞ is the multivariate Dirac δ-function, dxN is the volume element in
RN, and JijðxÞ= ∂fi=∂xj are matrix elements of the Jacobian matrix J= ðJijÞ. By
our assumptions, the random field fðxÞ is homogeneous and isotropic. For
such fields, samples of f and J taken in one and the same spatial point x are
uncorrelated, Æfl · ∂fi=∂xjæ= 0 for all i, j, l. This is well known and can be
checked by straightforward differentiation. In addition, the field f is
Gaussian; hence the fðxÞ and JðxÞ are actually statistically independent. This
simplifies the evaluation of the integral in [18] considerably. Indeed, the
statistical average in [18] factorizes and, because Æ



detð−μδij + JijðxÞÞ


æ does

not vary with x, the integrand effectively reduces to

Æδðð−μx + fðxÞÞæ=
Z

dkN

ð2πÞN   e
−μk·xÆeik·fðxÞæ. [19]

Furthermore, at every spatial point x, the vector fðxÞ is Gaussian with un-
correlated and identically distributed components,

ÆfiðxÞfjðxÞæ= δijσ
2, σ2 =2v2



Γ′V ð0Þ

+ 2a2


Γ′Að0Þ

N− 1

N
.

Therefore, Æeik · fðxÞæ= e−σ
2 jkj2=2, and, after evaluating the integral on the right-

hand side in [19], one arrives at [7].

Real Elliptic Matrices and Asymptotics of 〈N 〉tot. The joint probability density
(JPD) function PNðXÞ of the matrix entries in the elliptic ensemble of real
Gaussian random matrices X of size N×N is given by

PNðXÞ=Z−1
N exp

�
−

1
2ð1− τ2Þ Tr

�
XXT − τX2��, [20]

where ZN is the normalization constant and τ∈ ½0,1Þ. It is straightforward to
verify that the covariance of matrix entries Xij is given by the expression
specified in [9]. The mean density of real eigenvalues of ρðrÞN ðxÞ in the elliptic
ensemble [20] is known, in closed form, in terms of Hermite polynomials
(see ref. 39). Assuming, for simplicity, that N+ 1 is even, one has ρðrÞN+ 1ðxÞ=
ρðrÞ,1N+ 1ðxÞ+ ρðrÞ,2N+ 1ðxÞ, where

ρðrÞ,1N+1 ðxÞ=
1ffiffiffiffiffiffi
2π

p
XN−1
k=0

 




ψ ðτÞ
k ðxÞ




2
k!

[21]

and

ρðrÞ,2N+1 ðxÞ=
1ffiffiffiffiffiffi

2π
p ð1+ τÞðN− 1Þ!ψ

ðτÞ
N ðxÞ

Z x

0
ψ ðτÞ
N−1ðuÞdu. [22]

Here ψ ðτÞ
k ðxÞ= e−x

2=½2ð1+τÞ�hðτÞ
k ðxÞ and hðτÞ

k ðxÞ are rescaled Hermite polynomials,
hðτÞ
k ðxÞ= ð1= ffiffiffi

π
p Þ R∞

−∞ e−t
2 ðx + it

ffiffiffiffiffi
2τ

p Þk   dt. This, together with Eq. 12, allows one
to evaluate ÆN ætot in the limit N→∞. We shall sketch the corresponding
evaluation below.

The asymptotics of ρðrÞN ðxÞ in the bulk and at the edge of the support of the
distribution of real eigenvalues in the real elliptic ensemble were found in
ref. 39, and, outside of the support, it can also be readily extracted using [21]
and [22]. In particular, in the bulk, i.e., for jxj< ð1+ τÞ ffiffiffiffi

N
p

, the contribution of
[21] to ρðrÞN ðxÞ is dominant, and, to leading order in N,

ρðrÞN+1

�
λ

ffiffiffiffi
N

p �



jλj<1+τ

=
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð1− τ2Þ
p . [23]

At the same time, for jxj> ð1+ τÞ ffiffiffiffi
N

p
, both [21] and [22] yield exponentially small

contributions to ρðrÞN+1ðxÞ, with [22] being dominant. Our evaluation yields

ρðrÞN+1

�
λ

ffiffiffiffi
N

p �



λ>ð1+τÞ

=QðλÞexp�−NΨðλÞ�, where

QðλÞ=

2
64 τ

2πð1+ τÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 − 4τ
�q �

λ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4τ

p �
3
75
1=2

, [24]

ΨðλÞ= λ2

2ð1+ τÞ−
1
8τ

�
λ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4τ

p �2
− ln

λ+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4τ

p
2

ffiffiffi
τ

p . [25]

The form of [12] suggests the application of the Laplace method. One easily
finds that SðλÞ has a minimum at λ* =mð1+ τÞ, which belongs to the domain
jλj< 1+ τ as long as 0<m< 1. Thus, applying the Laplace method and taking
into account the asymptotic formula

KNðτÞ≈ 2
ffiffiffiffiffiffiffi
πN

p
e−N=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1+ τÞ=τ

p
, [26]

one arrives at the asymptotic expression [14] for ÆN ætot in the parameter
range 0<m< 1. Form> 1, the saddle point occurs in the domain λ> 1+ τ so that
the analysis requires search for the minimum of SðλÞ+ΨðλÞ. After straighforward
algebra, we find ðd=dλÞðSðλÞ+ΨðλÞÞ= ð1=2τÞðλ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4τ

p
Þ− ðm=τÞ, which is

equal to zero at λ= λ* =m+ ðτ=mÞ> 1+ τ. One also verifies that this is a point of
minimum for SðλÞ+ΨðλÞ, and a further simple calculation then yields Sðλ*Þ+
Ψðλ*Þ=−lnðm=

ffiffiffi
τ

p Þ. Calculating the saddle point contribution then yields [13].
The above asymptotic analysis assumes that 0≤ τ< 1. Let us now discuss

the modifications required to study the scaling regime of weakly non-
gradient flow τ→ 1 for 0<m< 1. We only need to evaluate the leading
contribution to ρðrÞN+ 1 given by [21]. By making use of the above integral
representation for the scaled Hermite polynomials hðτÞ

k ðxÞ and applying the
scaling τ= 1−u2=N, we can write

ρðrÞ,1N+1

�
λ

ffiffiffiffi
N

p �
=

1ffiffiffiffiffiffi
2π

p N
2πτ

e−N
λ2
1+τ+N

λ2
τ IN+1ðλÞ,

with INðλÞ given by

INðλÞ=
ffiffiffiffi
π

N

r
e−N

λ2
2

Z ∞

−∞
e−

u2p2

2 ΦN−2

�
N
2

�
p2 +

λ2

2

��
,

where ΦNðaÞ= e−a
PN

k=0a
k=k!. Recalling that the limit of ΦNðaÞ as N→∞ is 1 if

0< a< 1 and 0 if a> 1, one obtains

ρðrÞN+1

�
λ

ffiffiffiffi
N

p �
=
1
π

ffiffiffiffi
N

p Z ffiffiffiffiffiffiffiffiffiffiffiffi
1−λ2=4

p
0

e−u
2p2

dp.

Substituting this expression into the integrand in [12] and evaluating the
integral in the limit N→∞ (hence, τ→1) by the Laplace method then yields
ÆN ætot in the weakly nongradient regime.

Finally, our calculation of the profile of ÆN ætot in the transitional region
m= 1+ κN−1=2 uses the fact that, in such a regime, the main contribution to
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the integral [12] comes from the neighborhood of the spectral edge,
λ= 1+ τ+ ðζ

ffiffiffiffiffiffiffiffiffiffiffiffi
1− τ2

p
Þ= ffiffiffiffi

N
p

, where we have, to the leading order in N,

e
−N
�
SðλÞ+1

2

�
mN = exp

"
−
1− τ

2τ

�
κ2 + ζ2

�
+

ffiffiffiffiffiffiffiffiffiffiffiffi
1− τ2

p

τ
κζ

#
.

This, together with [26] and [15], converts [12] to [16].
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